2,467 research outputs found

    Sparsity Invariant CNNs

    Full text link
    In this paper, we consider convolutional neural networks operating on sparse inputs with an application to depth upsampling from sparse laser scan data. First, we show that traditional convolutional networks perform poorly when applied to sparse data even when the location of missing data is provided to the network. To overcome this problem, we propose a simple yet effective sparse convolution layer which explicitly considers the location of missing data during the convolution operation. We demonstrate the benefits of the proposed network architecture in synthetic and real experiments with respect to various baseline approaches. Compared to dense baselines, the proposed sparse convolution network generalizes well to novel datasets and is invariant to the level of sparsity in the data. For our evaluation, we derive a novel dataset from the KITTI benchmark, comprising 93k depth annotated RGB images. Our dataset allows for training and evaluating depth upsampling and depth prediction techniques in challenging real-world settings and will be made available upon publication

    New approaches to privacy preserving signatures

    Get PDF
    In this thesis we advance the theory and practice of privacy preserving digital signatures. Privacy preserving signatures such as group and ring signatures enable signers to hide in groups of potential signers. We design a cryptographic primitive called signatures with flexible public keys, which allows for modular construction of privacy preserving signatures. Its core is an equivalence relation between verification keys, such that key representatives can be transformed in their class to obscures their origin. The resulting constructions are more efficient than the state of the art, under the same or weaker assumptions. We show an extension of the security model of fully dynamic group signatures, which are those where members may join and leave the group over time. Our contribution here, which is facilitated by the new primitive, is the treatment of membership status as potentially sensitive information. In the theory of ring signatures, we show a construction of ring signatures which is the first in the literature with logarithmic signature size in the size of the ring without any trusted setup or reliance on non-standard assumptions. We show how to extend our techniques to the derived setting of linkable ring signatures, where different signatures of the same origin may be publicly linked. Here, we further revisit the notion of linkable anonymity, offering a significant strengthening compared to previous definitions.Diese Arbeit treibt die Theorie und Praxis der privatsphärewahrenden digitalen Signa- turen voran. Privatsphärewahrende Signaturen, wie Gruppen- oder Ringsignaturen erlauben es Zeichnern sich in einer Gruppe potenzieller Zeichner zu verstecken. Wir entwerfen mit Signatures with Flexible Public Keys einen kryptografischen Baustein zur modularen Konstruktion von privatsphärewahrenden Signaturen. Dessen Kern ist eine Äquivalenzrelation zwischen den Schlüsseln, sodass ein Schlüsselvertreter in seiner Klasse bewegt werden kann, um seinen Ursprung zu verschleiern. Darauf auf- bauende Konstruktionen sind effizienter als der Stand der Technik, unter gleichen oder schwächeren Annahmen. Wir erweitern das Sicherheitsmodell vollständig dynami- scher Gruppensignaturen, die es Mitgliedern erlauben der Gruppe beizutreten oder sie zu verlassen: Durch das neue Primitiv, wird die Behandlung der Mitgliedschaft als potenziell sensibel ermöglicht. In der Theorie der Ringsignaturen geben wir die erste Konstruktion, welche über eine logarithmische Signaturgröße verfügt, ohne auf eine Vorkonfiguration oder unübliche Annahmen vertrauen zu müssen. Wir übertragen unsere Ergebnisse auf das Feld der verknüpfbaren Ringsignaturen, die eine öffentliche Verknüpfung von zeichnergleichen Signaturen ermöglichen. Unsere Neubetrachtung des Begriffs der verknüpfbaren Anonymität führt zu einer signifikanten Stärkung im Vergleich zu früheren Definitionen

    On Feature Relevance Uncertainty: A Monte Carlo Dropout Sampling Approach

    Full text link
    Understanding decisions made by neural networks is key for the deployment of intelligent systems in real world applications. However, the opaque decision making process of these systems is a disadvantage where interpretability is essential. Many feature-based explanation techniques have been introduced over the last few years in the field of machine learning to better understand decisions made by neural networks and have become an important component to verify their reasoning capabilities. However, existing methods do not allow statements to be made about the uncertainty regarding a feature's relevance for the prediction. In this paper, we introduce Monte Carlo Relevance Propagation (MCRP) for feature relevance uncertainty estimation. A simple but powerful method based on Monte Carlo estimation of the feature relevance distribution to compute feature relevance uncertainty scores that allow a deeper understanding of a neural network's perception and reasoning.Comment: 18 pages, 15 figure

    After the Review Conference: the NPT remains robust

    Full text link
    Originally scheduled for 2020, the 10th Review Conference of the Treaty on the Non-Proliferation of Nuclear Weapons (NPT) had to be deferred four times. It was not until August 2022 that the 191 NPT states finally met. At least since Russia’s invasion of Ukraine, observers had expected that the delegates would be unable to agree on a Final Document. Surprisingly, differences over nuclear disarmament did not play a role in the failure of the conference, despite the growing polarization over this issue since the entry into force of the Treaty on the Prohibition of Nuclear Weapons (TPNW) at the beginning of 2021. Russia alone was responsible for torpedoing the consensus. Conversely, all the non-nuclear NPT parties made major concessions in a bid to pre­vent the conference from failing. This shows that in a context of global tensions, nuclear disarmament is a lesser concern for the non-nuclear-weapon states (NNWS) than they themselves have long been suggesting. That the stability of the NPT does not depend on progress towards disarmament is good news. For Germany’s National Security Strategy (NSS), it means that greater concessions to advocates of the TPNW are not necessary to protect the NPT. (Autorenreferat

    ARE ALTERNATIVE TREATMENTS EFFECTIVE? ISSUES & METHODS INVOLVED IN MEASURING EFFECTIVENESS OF ALTERNATIVE TREATMENTS

    Get PDF
    This paper reviews common research methods which have been used in alternative medicine. We focus on a case series method called the before-after treatment experimental design. How this method can be used by practitioners to measure the effectiveness of their treatments is explored in depth. We address what variables should be measured before, during and after treatment. References to commonly used measurement instruments for physical, emotional and spiritually based variables are included
    corecore